1.BC=72
∠DAC=∠BAC-∠DAB=120-90=30°
∠CBA=∠BCA=(180°-120°)/2=30°=∠ACD
DA=DC=24
RT△BAD中 ∠ABD=30°
BD=2AD=48
BC=BD+DC=72
2.35°
证△ABP全等于△CBP
BP=BP BA=BC AP=PC
3.A
我用正弦定理
sinC/AB=sinB/AC
sinC/sinB=AB/AC
sin2B/sinB=AB/AC
sin2B=2sinB*cosB
AB/AC=2cosB
0°
1.BC=72
∠DAC=∠BAC-∠DAB=120-90=30°
∠CBA=∠BCA=(180°-120°)/2=30°=∠ACD
DA=DC=24
RT△BAD中 ∠ABD=30°
BD=2AD=48
BC=BD+DC=72
2.35°
证△ABP全等于△CBP
BP=BP BA=BC AP=PC
3.A
我用正弦定理
sinC/AB=sinB/AC
sinC/sinB=AB/AC
sin2B/sinB=AB/AC
sin2B=2sinB*cosB
AB/AC=2cosB
0°