已知关于x的一元二次方程x2-6x+k+1=0的两个实数根是x1,x2,且x12+x22=24,则k的值是______.

1个回答

  • 解题思路:首先根据一元二次方程的根与系数的关系表示出两根之积或两根之和,x12+x22=24即可变形为(x1+x22-2x1x2=24,即可得到关于k的方程,从而求解.

    ∵x1,x2是一元二次方程x2-6x+k+1=0的两个实数根,

    ∴x1•x2=k+1 ①

    x1+x2=-(-6) ②

    ∵x12+x22=24,

    ∴(x1+x22-2x1x2=24 ③

    由①②③,得

    k=5;

    故答案是5.

    点评:

    本题考点: 根与系数的关系.

    考点点评: 此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.