(1)a2=2a1+1=1, a3=2a2+1=3
由a(n+1)=2an+n可得:
a(n+1)-an=an+n, n=a(n+1)-2an
a(n+2)-a(n+1)=a(n+1)+n+1=a(n+1)+a(n+1)-2an+1=2[a(n+1)-an]+1
(2)bn=a(n+1)-an, b1=a2-a1=1
b(n+1)=a(n+2)-a(n+1) =2[a(n+1)-an]+1=2bn+1
设Cn=bn+1, bn=Cn-1, c1=b1+1=2
C(n+1)-1=2(Cn-1)+1=2Cn-1
C(n+1)=2Cn
Cn为首相=2,等比=2的等比数列
Cn=2^n
Bn=Cn-1=2^n-1
(2)bn=a(n+1)-an=2^n-1
a(n+1)=2^n+an
an=2^(n-1)+a(n-1)-1
a2=2^1-1
a3=2^2+(2^1-1)-1=2^2+2^1-2
a4=2^3+(2^2+2^1-2)-1=2^3+2^2+2^1-3
.
an=2^(n-1)+a(n-1)-1=2^(n-1)+2^(n-2)+.+2^1-(n-1)
=2[2^(n-1)-1]/(2-1) - (n-1)
=2[2^(n-1)-1] - (n-1)
=2^n-2-n+1
=2^n-n-1