解题思路:(1)先根据两点间的距离公式求出三角形各边的长,再根据勾股定理进行判断即可;
(2)旋转后所得几何体为一个圆锥,根据圆锥的体积计算公式计算即可.
(1)答:三角形是等腰直角三角形;
由A、B、C三点的坐标可知,
AC=
(2-3)2+(3-2)2=
2,
BC=
(3-2)2+(2-1)2=
2,
AB=3-1=2,
因为(
2)2+(
2)2=4=22,即AC2+BC2=AB2,AC=BC,
故此三角形是等腰直角三角形;
(2)圆锥的体积为[1/3]π•BC2•AC=[1/3]π×(
2)2×
2=[2/3]
2π.
点评:
本题考点: 勾股定理的逆定理;等腰三角形的判定;旋转的性质.
考点点评: 此题考查了两点间的距离公式和“面动成体的相关知识”,不仅要求熟悉基本的公式运算,还要有较强的空间思维能力.