∵lim(x→2) ln(x-1) =0
∴lim(x→2) [f(x)+3]=0, 即 f(2)=-3
lim(x→2) [f(x)+3]/ln(x-1)=lim(x→2) [f(x)+3]'/[ln(x-1)]'=lim(x→2) [(x-1)f'(x)]=f'(2)=1
切线方程为y-f(2)=f'(2)*(x-2),即y=x-5
∵lim(x→2) ln(x-1) =0
∴lim(x→2) [f(x)+3]=0, 即 f(2)=-3
lim(x→2) [f(x)+3]/ln(x-1)=lim(x→2) [f(x)+3]'/[ln(x-1)]'=lim(x→2) [(x-1)f'(x)]=f'(2)=1
切线方程为y-f(2)=f'(2)*(x-2),即y=x-5