数学中的因式分解中的拆与添项法.

2个回答

  • 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

    例4 分解因式:x3-9x+8.

    分析:本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

    解法1 将常数项8拆成-1+9.

    原式=x3-9x-1+9

    =(x3-1)-9x+9

    =(x-1)(x2+x+1)-9(x-1)

    =(x-1)(x2+x-8).

    解法2 将一次项-9x拆成-x-8x.

    原式=x3-x-8x+8

    =(x3-x)+(-8x+8)

    =x(x+1)(x-1)-8(x-1)

    =(x-1)(x2+x-8).

    解法3 将三次项x3拆成9x3-8x3.

    原式=9x3-8x3-9x+8

    =(9x3-9x)+(-8x3+8)

    =9x(x+1)(x-1)-8(x-1)(x2+x+1)

    =(x-1)(x2+x-8).

    解法4 添加两项-x2+x2.

    原式=x3-9x+8

    =x3-x2+x2-9x+8

    =x2(x-1)+(x-8)(x-1)

    =(x-1)(x2+x-8).

    说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

    例5 分解因式:

    (1)x9+x6+x3-3;

    (2)(m2-1)(n2-1)+4mn;

    (3)(x+1)4+(x2-1)2+(x-1)4;

    (4)a3b-ab3+a2+b2+1.

    解 (1)将-3拆成-1-1-1.

    原式=x9+x6+x3-1-1-1

    =(x9-1)+(x6-1)+(x3-1)

    =(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

    =(x3-1)(x6+2x3+3)

    =(x-1)(x2+x+1)(x6+2x3+3).

    (2)将4mn拆成2mn+2mn.

    原式=(m2-1)(n2-1)+2mn+2mn

    =m2n2-m2-n2+1+2mn+2mn

    =(m2n2+2mn+1)-(m2-2mn+n2)

    =(mn+1)2-(m-n)2

    =(mn+m-n+1)(mn-m+n+1).

    (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

    原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

    =〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

    =〔(x+1)2+(x-1)2]2-(x2-1)2

    =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

    (4)添加两项+ab-ab.

    原式=a3b-ab3+a2+b2+1+ab-ab

    =(a3b-ab3)+(a2-ab)+(ab+b2+1)

    =ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

    =a(a-b)〔b(a+b)+1]+(ab+b2+1)

    =[a(a-b)+1](ab+b2+1)

    =(a2-ab+1)(b2+ab+1).

    说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验

    x^4+4y^4

    =x^4+4y^4+4x^2y^2-4x^2y^2

    =(x^2+2y^2)^2-4x^2y^2

    =(x^2+2y^2-2xy)(x^2+2y^2+2xy)

    用添项法!

    6、拆、添项法

    例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

    bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

    =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

    =c(c-a)(b+a)+b(a+b)(c-a)

    =(c+b)(c-a)(a+b)