解题思路:配方得出(x-1)2=3600,推出x-1=60,x-1=-60,求出x的值,求出a、b的值,代入2a-b求出即可.
x2-2x-3599=0,
移项得:x2-2x=3599,
x2-2x+1=3599+1,
即(x-1)2=3600,
x-1=60,x-1=-60,
解得:x=61,x=-59,
∵一元二次方程式x2-2x-3599=0的两根为a、b,且a>b,
∴a=61,b=-59,
∴2a-b=2×61-(-59)=181,
故选D.
点评:
本题考点: 解一元二次方程-配方法;有理数的混合运算.
考点点评: 本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.