若f(1)=1,则f(f(1))=f(1)=1,与条件f(f(n))=3n矛盾,故不成立;
若f(1)=3,则f(f(1))=f(3)=3{由条件},进而f(f(3))=f(3)=9,与前式矛盾,故不成立;
若f(1)=n(n>3),则f(f(1))=f(n)=3,与f(x)单调递增矛盾.
所以只剩f(1)=2.验证之:
f(f(1))=f(2)=3,
进而f(f(2))=f(3)=6,
进而f(f(3))=f(6)=9,
由单调性,f(4)=7,f(5)=8
若f(1)=1,则f(f(1))=f(1)=1,与条件f(f(n))=3n矛盾,故不成立;
若f(1)=3,则f(f(1))=f(3)=3{由条件},进而f(f(3))=f(3)=9,与前式矛盾,故不成立;
若f(1)=n(n>3),则f(f(1))=f(n)=3,与f(x)单调递增矛盾.
所以只剩f(1)=2.验证之:
f(f(1))=f(2)=3,
进而f(f(2))=f(3)=6,
进而f(f(3))=f(6)=9,
由单调性,f(4)=7,f(5)=8