依题意作图如下.
设OA=2a;有OC=a,OB=4a;
∵S=1/2BC*OA=1/2*3a*a=1;
∴a=√6/3;
∴OA=2√6/3,OB=4√6/3,OC=√6/3;
∴在平面直角坐标系中有:
A(0,2√6/3),B(-4√6/3,0),C(-2√6/3,0);
设其外接圆为(x-m)²+(y-n)²=r²;
代入ABC三点,有:
(0-m)²+(2√6/3-n)²=r²;
(-4√6/3-m)²+(0-n)²=r²;
(-2√6/3-m)²+(0-n)²=r²;
解得:r=2√15 /3;