m^2+(n-mn)^2+2mn-2m^2n
=m^2+n^2-2m^2n+m^2n^2+2mn-2m^2n
=(m+n)^2-2mn^2+m^2n^2-2m^2n
=(m+n)^2-2mn(m+n)+m^2n^2
=(m+n-mn)^2
=(3-2/3)^2
=(7/3)^2
=49/9
证明:
a^2+2b^2+c^2-2ab-2bc=0
a^2-2ab+b^2+b^2-2bc+c^2=0
(a-b)^2+(b-c)^2=0
故:a=b 且 b=c
故:a=b=c,为等边三角形.
m^2+(n-mn)^2+2mn-2m^2n
=m^2+n^2-2m^2n+m^2n^2+2mn-2m^2n
=(m+n)^2-2mn^2+m^2n^2-2m^2n
=(m+n)^2-2mn(m+n)+m^2n^2
=(m+n-mn)^2
=(3-2/3)^2
=(7/3)^2
=49/9
证明:
a^2+2b^2+c^2-2ab-2bc=0
a^2-2ab+b^2+b^2-2bc+c^2=0
(a-b)^2+(b-c)^2=0
故:a=b 且 b=c
故:a=b=c,为等边三角形.