a+b+c=0
a+b=-c
(a+b)^2=c^2
a^2+b^2-c^2=2ab
同理有:
a^2+c^2-b^2=2ac
c^2+b^2-a^2=2bc
所以:
1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)+1/(a^2+b^2-c^2)=1/(2bc)+1/(2ac)+1/2ab
=(a+b+c)/2abc
=0
a+b+c=0
a+b=-c
(a+b)^2=c^2
a^2+b^2-c^2=2ab
同理有:
a^2+c^2-b^2=2ac
c^2+b^2-a^2=2bc
所以:
1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)+1/(a^2+b^2-c^2)=1/(2bc)+1/(2ac)+1/2ab
=(a+b+c)/2abc
=0