法①
证明:
∵∠ACB=90°
∴∠ACH+∠BCF=90°
∵CH⊥AM,即∠CAH=90°
∴∠ACH+∠CAH=90°
∴∠BCF=∠CAH
∵CD为等腰三角形斜边上的中线
∴CD=AD
∴有∠ACD=45°
△CAM与△BAE中
BC=CA
∠BCF=∠CAH
∠CBE=∠ACM
∴△CAM≌△BAE
∴BE=CM 证毕 □
法②
证明:
过廷长CD到N使DN=CD 连接NB,AN
∵D为AB中点,且ACB为等腰直角三角形AB为斜边
∴AB与CN互相垂直平分
∴ACBN为正方形
∴∠CAG+∠∠NAM=90°
又∵∠EGA=90°
∴∠ACE+∠CAG=90°
∴∠ACE=∠NAM
∵∠EAC与∠CNA均为正方形对角线平分的角
∴∠EAC=∠CNA=45°
△AEC与△AMN中
∠EAC=∠CNA
AN=CA
∠ACE=∠NAM
∴△AEC≌△AMN
∴AE=MN
又∵AB=NC
∴EB=CM 证毕 □