AD=a,AC=b,所以有 AE=(2/3)b,EC=(1/3)b,DC=b-a,BC=2(b-a).
AB=AE+EB= (2/3)b+ ( (1/3)b- 2(b-a) )=a-b;
先作DG// BE 交AC 于G ,由于D是中点 所以G 也是CE的中点;
所以 t= AF/ AD= AE/ AG= 4/5.
AD=a,AC=b,所以有 AE=(2/3)b,EC=(1/3)b,DC=b-a,BC=2(b-a).
AB=AE+EB= (2/3)b+ ( (1/3)b- 2(b-a) )=a-b;
先作DG// BE 交AC 于G ,由于D是中点 所以G 也是CE的中点;
所以 t= AF/ AD= AE/ AG= 4/5.