(1) 2an=n+Sn
2a(n+1)=n+1+S(n+1)
相减 得 2【a(n+1)-an】=1+a(n+1) a(n+1)=2an+1
b(n+1)=a(n+1)+1=2(an+1)=2bn a1=1 an=2^n -1 bn=2^n
(2) cn=(2n+1)/2^n
Tn=3/2+5/4 +.(2n-1)/2^(n-1)+(2n+1)/2^n (a)
1/2Tn=0 + 3/4+.(2n-3)/2^(n-1)+(2n-1)/2^n +(2n+1)/2^(n+1) (b)
a-b 前面添个0 对齐减
得
1/2 Tn=3/2 +{ 2/4+.+2/2^n}-(2n+1)/2^(n+1)
Tn=3+2-(2n+1)/2^n - 1/2^(n-2)