tana+tanb=m
tanatanb=m+1
tan(a+b)=(tana+tanb)/(1-tanatanb)=m/(1-m-1)=-1
所以a+b=3π/4
sin(a+b)+cos(a+b)
=sin(3π/4)+cos(3π/4)
=√2/2-√2/2=0
tana+tanb=m
tanatanb=m+1
tan(a+b)=(tana+tanb)/(1-tanatanb)=m/(1-m-1)=-1
所以a+b=3π/4
sin(a+b)+cos(a+b)
=sin(3π/4)+cos(3π/4)
=√2/2-√2/2=0