在三角形ABC中,已知a^4+b^4+c^4=2c^2(a^2+b^2),则∠C=?
a^4+b^4+c^4=2c^2(a^2+b^2)
a^4+b^4+c^4-2c^2a^2-2c^2b^2=0
(a^2+b^2-c^2)^2=2a^2b^2
a^2+b^2-c^2=正负(根号2)ab
cosC=(a^2+b^2-c^2)/(2ab)=正负(根号2)/2
C=45度,或135度
选C
在三角形ABC中,已知a^4+b^4+c^4=2c^2(a^2+b^2),则∠C=?
a^4+b^4+c^4=2c^2(a^2+b^2)
a^4+b^4+c^4-2c^2a^2-2c^2b^2=0
(a^2+b^2-c^2)^2=2a^2b^2
a^2+b^2-c^2=正负(根号2)ab
cosC=(a^2+b^2-c^2)/(2ab)=正负(根号2)/2
C=45度,或135度
选C