等比数列An的前n项和为Sn,已知对任意的N属于正整数,点(n,Sn)均在函数y=3*2^x+r的图像上

2个回答

  • 设等比数列{an}公比为q.

    x=1 y=S1=a1,x=2,y=S2=a1+a2,x=3,y=S3=a1+a2+a3分别代入

    a1=6+r (1)

    a1+a2=12+r (2)

    a1+a2+a3=24+r (3)

    (2)-(1)

    a2=6

    (3)-(1)

    a2+a3=18

    a3=18-a2=18-6=12

    q=a3/a2=12/6=2

    a1=a2/q=6/2=3

    r=a1-6=3-6=-3

    数列{an}的通项公式为an=3×2^(n-1)=(3/2)2^n

    bn=3n/an=2n/2^n

    Tn=2(1/2^1+2/2^2+3/2^3+...+n/2^n)

    Tn/2=2[1/2^2+2/2^3+...+(n-1)/2^n+n/2^(n+1)]

    Tn-Tn/2=Tn/2=2(1/2^1+1/2^2+...+1/2^n-n/2^(n+1)]

    Tn=4[1/2^1+1/2^2+...+1/2^n-n/2^(n+1)]

    =4[(1/2)(1-1/2^n)/(1-1/2)]-2n/2^n

    =4-4/2^n-2n/2^n

    =4-(2n+4)/2^n

    =4-(n+2)/2^(n-1)