先看 (1+x)(1+x^2)*(1+x^4)*(1+x^8)*(1+x^16)
=(1-x)*(1+x)(1+x^2)*(1+x^4)*(1+x^8)*(1+x^16) / (1-x)
=(1-x^32)/(1-x)
现在x=2^(1/32)
(1+2^(1/32))*(1+2^(1/16))*(1+2^(1/8))*(1+2^(1/4))*(1+2^(1/2))
=(1-2)/(1-2^(32))
再乘以(1+(1/2))
结果就是(-3)/(2*(1-2(1/32)))
先看 (1+x)(1+x^2)*(1+x^4)*(1+x^8)*(1+x^16)
=(1-x)*(1+x)(1+x^2)*(1+x^4)*(1+x^8)*(1+x^16) / (1-x)
=(1-x^32)/(1-x)
现在x=2^(1/32)
(1+2^(1/32))*(1+2^(1/16))*(1+2^(1/8))*(1+2^(1/4))*(1+2^(1/2))
=(1-2)/(1-2^(32))
再乘以(1+(1/2))
结果就是(-3)/(2*(1-2(1/32)))