求下列微分方程的通解:1、(1-x^2)y"-xy'=2 2、4y"+4y'+y=0 3、y"-4y'+13y=0帮忙解

1个回答

  • 不显含y型,记y'=p,则y"=dp/dx=p',

    (1-x^2)y"-xy'=2原微分方程可化为

    (1-x^2)p'-xp=2

    p'-x/(1-x^2)p=2/(1-x^2)

    公式法得

    p=[e^(∫x/(1-x^2)dx][C1+∫2/(1-x^2)[e^(∫-x/(1-x^2)dx]dx]

    =e^(-1/2)ln(1-x^2)[C1+∫{2/(1-x^2)e^[(1/2)ln(1-x^2)]}dx]

    =(1-x^2)^(-1/2)[C1+∫{[2/(1-x^2)](1-x^2)^(1/2)}dx]

    =(1-x^2)^(-1/2)[C1+∫{[2/(1-x^2)]^(1/2)dx]

    =(1-x^2)^(-1/2)[C1+2arcsinx]

    即dy/dx=(1-x^2)^(-1/2)[C1+2arcsinx]

    ∫dy=∫(1-x^2)^(-1/2)[C1+2arcsinx]dx

    y=(1/2)∫[C1+2arcsinx]d(C1+2arcsinx)

    得y=(1/4)(C1+2arcsinx)^2+C2

    特征方程 4r^2+4r+1=0 (2r+1)=0 r1=r2=-1/2

    所以 通解为(c1+c2x)e^(-1/2x)

    y"-4y'+13y=0

    r^2-4r+13=0

    deta