f(x)=(px^2+2)/(3x+q)
f(-x)=(px^2+2)/(-3x+q)=-f(x)=(px^2+2)/(-3x-q)
所以有q=0
f(x)=(px^2+2)/(3x)
代入f(2)=(4p+2)/6=5/3,得:p=2
f(x)=2(x^2+1)/(3x)
令t=2x-3,当x∈[-0.5,1.25]时,t∈[-4,-0.5]
g(x)=f(t)=2(t^2+1)/(3t)=2/3*(t+1/t)
由于 t
f(x)=(px^2+2)/(3x+q)
f(-x)=(px^2+2)/(-3x+q)=-f(x)=(px^2+2)/(-3x-q)
所以有q=0
f(x)=(px^2+2)/(3x)
代入f(2)=(4p+2)/6=5/3,得:p=2
f(x)=2(x^2+1)/(3x)
令t=2x-3,当x∈[-0.5,1.25]时,t∈[-4,-0.5]
g(x)=f(t)=2(t^2+1)/(3t)=2/3*(t+1/t)
由于 t