设函数f(x)=a^x+b^x-c^x,其中c>a>0,c>b>0,

3个回答

  • 分析:(1)由集合M中的元素满足的条件,得到c≥a+b=2a,求得的范围,解出函数f(x)=ax+bx﹣cx的零点,利用不等式可得零点x的取值集合;

    (2)对于①,把函数式f(x)=ax+bx﹣cx变形为,利用指数函数的单调性即可证得结论成立;

    对于②,利用取特值法说明命题是正确的;

    对于③,由△ABC为钝角三角形说明f(2)<0,又f(1)>0,由零点的存在性定理可得命题③正确.

    (1)因为c>a,由c≥a+b=2a,所以,则.

    令f(x)=ax+bx﹣cx=.

    得,所以.

    所以0<x≤1.

    故答案为{x|0<x≤1};

    (2)因为,

    又,

    所以对∀x∈(﹣∞,1),.

    所以命题①正确;

    令x=1,a=b=1,c=2.则ax=bx=1,cx=2.不能构成一个三角形的三条边长.

    所以命题②正确;

    若三角形为钝角三角形,则a2+b2﹣c2<0.

    f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0.

    所以∃x∈(1,2),使f(x)=0.

    所以命题③正确.

    故答案为①②③.