注意到(A+1/A)^2=a^2 + 1/a^2 + 2
设 C=A+1/A
C0时
则 左边 = (C^2 - 2)^(1/2) - 2^(1/2) = (C^2 - 4)/((C^2-2)^(1/2) + 2^(1/2))
= (C - 2)(C + 2)/((C^2-2)^(1/2) + 2^(1/2))>=(C - 2)(C + 2)/(C + 2^(1/2)) > C - 2 = 右边
其中“>=”是由于|C| >= 2.
注意到(A+1/A)^2=a^2 + 1/a^2 + 2
设 C=A+1/A
C0时
则 左边 = (C^2 - 2)^(1/2) - 2^(1/2) = (C^2 - 4)/((C^2-2)^(1/2) + 2^(1/2))
= (C - 2)(C + 2)/((C^2-2)^(1/2) + 2^(1/2))>=(C - 2)(C + 2)/(C + 2^(1/2)) > C - 2 = 右边
其中“>=”是由于|C| >= 2.