题目中 给出了 数域的 定义 然后 利用这个 定义 来证明 下面的 命题
我们先来证明下
(1) 整数集是数域
也就是证明 整数+整数 整数-整数 整数*整数 整数/整数 是 整数
很明显 整数/整数 不能确保是整数 那么 该结论不成立
(2) 若有理数集Q含于M,则数集M必为数域
有理数集Q含于M ,M可能是实数集,那么整数集也包含在M中 ,由第一个 就可以看出
这个M 也未必是 数域
(3)数域必为无限集
有限的数字无法同时满足 a+b,a-b,ab,a/b属于P
(4)存在无穷多个数集
这个是说 数域存在无穷多个数集
由题目中 “有理数集Q是数域;数集F={a+b√2|a,b∈Q}也是数域” 可以看出 这个 命题成立的.
数域是一种 特殊的数集,
也就是说 数域 一定是 数集
数集 不一定是数域