设f( x^3)+g(x^3)=f1(x)(x^2+x+1)
[f( x^3)+g(x^3)](x-1)=f1(x)(x^2+x+1)(x-1)
[f( x^3)+g(x^3)](x-1)=f1(x)(x^3-1)
所以e^(i*2pi/3)是上面右边多项式的根,i是虚数单位.
从而e^(i*2pi/3)是[f( x^3)+g(x^3)]的根
带入即得f(1)+g(1) =0
设f( x^3)+g(x^3)=f1(x)(x^2+x+1)
[f( x^3)+g(x^3)](x-1)=f1(x)(x^2+x+1)(x-1)
[f( x^3)+g(x^3)](x-1)=f1(x)(x^3-1)
所以e^(i*2pi/3)是上面右边多项式的根,i是虚数单位.
从而e^(i*2pi/3)是[f( x^3)+g(x^3)]的根
带入即得f(1)+g(1) =0