1/(n^2+n)=1/2[ 1/n - 1/(n+2) ] ∴Sn=1/(1^2+2)+1/(2^2+4)+1/(3^2+6)+……+1/(n^2+n),=1/2[1+1/2-1/(n+1)-1/(n+2)] =3/4-1/2[1/(n+1)+1/(n+2)] ∴limSn=3/4
若Sn=1/(1^2+2)+1/(2^2+4)+1/(3^2+6)+……+1/(n^2+n),求limSn拜托了各位
1个回答
相关问题
-
1.求Sn=2/2+3/2∧2+4/2∧3+...+n/2∧n-1+n+1/2∧n
-
1.等比数列√2 +1,1,√2 -1,3- 2√2……设前N项和为SN,则limSN=
-
sn=2*1/2+4*1/2^2+6*1/2^3+……+2n*1/2^n
-
问一道极限化简题Sn=n^2an,n→+∞,an=2(1/n-1/(n+1)) limSn=n^2*2(1/n-1/(n
-
求Sn=1*2+3*4+5*6+…+(2n-1)2n急!
-
Sn=1/(1^2+2)+1/(2^2+4)+1/(3^2+6)+...+1/(n^2+2n),求和
-
Sn=1/(1+2^2)+1/(2^2+3^2)+1/(3^2+4^2)+…+(2n+1)/n^2(n+1)^2
-
Sn=3/(1*2^2)+5/(2^2*3^2)+7/(3^2*4^2)+...+2n+1/[n^2(n+1)^2],求
-
sn=1+2+4+...+2^(n-1),求sn
-
1²﹢2²﹢3²﹢…n²=﹙1/6﹚n﹙n+1﹚﹙2n+2﹚求2²+4