(1)BE=AD
证明:
∵ABCD是直角梯形 ∠ABC=90
∴∠A=90º
∵CE⊥BD
∴∠BEC+∠ABD=90º
∵∠ADB+∠ABD=90º
∴∠BEC=∠ADB
又∵∠A=∠EBC,AB=BC
∴⊿BCE≌⊿DAB(AAS)
∴AD=BE
2)AC垂直平分ED
∵⊿BEC ≌⊿ADB
∴EC=BD
∵BD =CD
∴CE=CD
又∵AD=AE,AC=AC
∴⊿AEC≌⊿ADC(SSS)
∴∠AEC=∠DAC
∵⊿AED是等腰三角形,且AC是顶角平分线【根据等腰三角形三线合一】
∴AC垂直平分ED