f(1/3) = |ln1/3| = -ln1/3 = ln3,f(1/2) = |ln1/2| = -ln1/2 = ln2
因lnx在定义域增函数,故A
f为分段函数,所以要求ff(1/2),首先1/2>0,所以f(1/2)=log2 1/2 = -1,而-1<0,所以f(-1)=3^(-1)=1/3.即f(f(1/2))=f(-1)=1/3
(x-1)^2log4(a)+2x = 0,即log4(a)x^2+[2-2log4(a)]x+log4(a)=0
无实数根,则△<0,即 [2-2log4(a)]^2-4log4(a)^2<0
4-8log4(a)<0
log4(a)>1/2=log4(2)
a>2