a1=2
a(n+1)= an +2 ; n is odd
= 2an ; n is even
a2= a1+2 = 4
if n is odd
a(n+1)= an +2
=2a(n-1) +2
a(n+1) +2 = 2[ a(n-1) +2 ]
a(n+1) +2 = 2^[(n-1)/2].( a2+2 )
= 3.2^[(n+1)/2]
a(n+1) = -2+ 3.2^[(n+1)/2]
n=2007
a2008 = -2+ 3.2^(1004)
a1=2
a(n+1)= an +2 ; n is odd
= 2an ; n is even
a2= a1+2 = 4
if n is odd
a(n+1)= an +2
=2a(n-1) +2
a(n+1) +2 = 2[ a(n-1) +2 ]
a(n+1) +2 = 2^[(n-1)/2].( a2+2 )
= 3.2^[(n+1)/2]
a(n+1) = -2+ 3.2^[(n+1)/2]
n=2007
a2008 = -2+ 3.2^(1004)