三角形ABC是等边三角形,三角形BDC是顶角角BDC为120度的等腰
以D为顶点作一个60度的角,角的俩边分别交AB、AC与M、N俩点,连结MN,求证;MN=BM+CN
证:
延长MB至G,使BG=CN,连接GD
1)
∵ △BDC是顶角∠BDC为120度的等腰△
∴ BD=DC,∠CBD=∠BCD=30度
∵ △ABC是等边△
∴ ∠ABC=∠ACB=60度
∴ ∠CBD+∠ABC=∠BCD+∠ACB=90度
∴ ∠ABD=∠ACD=90度
∵ ∠DBG=180-90=90度
∴ ∠DBE=∠ACD=90
∵ BD=DC,BE=CN
∴ △BGD≌△CND
∴ DE=DN,∠GDB=∠NDC
∴ ∠GDN=∠BDC
2)又
∵ ∠BDC=120度
∴ ∠GDN=∠BDC=120度
∵ ∠MDN=60度
∴ ∠GDM=120-60=60度
∴ ∠GDM=∠MDN
∵ DE=DN,DM=DM
∴ △GDM≌△NDM
∴ MN=MG
∵ MG=BM+BG,BG=CN
∴ MN=BM+CN