设0≤x1<x2,则
y1-y2=-√x1+√x2=√x2-√x1
=(√x2-√x1)(√x2+√x1)/(√x2+√x1)
=(x2-x1)/(√x2+√x1)
∵x2-x1>0,√x2+√x1>0
∴y1-y2>0
即y=-√x在[0,+∞)上递减
设0≤x1<x2,则
y1-y2=-√x1+√x2=√x2-√x1
=(√x2-√x1)(√x2+√x1)/(√x2+√x1)
=(x2-x1)/(√x2+√x1)
∵x2-x1>0,√x2+√x1>0
∴y1-y2>0
即y=-√x在[0,+∞)上递减