用韦达定理,如果一元二次方程 aX^2+bX+C=0(a不等于0)
方程的两根X1,X2和方程的系数a,b,c就满足X1+X2=-(b/a),X1*X2=c/a
m+n==2 m*n=-1
所以(m+n)^2=m^2+n^2+2mn=4
m^2+n^2=4-2mn=6
3m^2-n^2-8m+1
=3m^2+3n^2-4n^2-8m+1
=3(m^2+n^2)-4n^2-8m+1
=12-4n^2-8m+1
因为n是一元二次方程x2-2x-1=0的根
所以n^2-2n-1=0
n^2=2n+1
所以3m^2-n^2-8m+1
=12-4n^2-8m+1
=12-4(2n+1)-8m+1
=12-8n-4-8m+1
=12-8(m+n)-3=12-16-3=-7