CE=EF,其理由如下:
连接DE,
∵AE=BC,BC=AD
∴AE=AD
∴△AED为等腰三角形
则有∠AED=∠ADE
∠FDE+∠AED=90°,∠CDE+∠ADE=90°
∴∠FDE=∠CDE
∴DE为∠FDC的角平分线
又∵EF⊥DF于F,EC⊥CD于C
∴EF=EC(角平分线定理)
CE=EF,其理由如下:
连接DE,
∵AE=BC,BC=AD
∴AE=AD
∴△AED为等腰三角形
则有∠AED=∠ADE
∠FDE+∠AED=90°,∠CDE+∠ADE=90°
∴∠FDE=∠CDE
∴DE为∠FDC的角平分线
又∵EF⊥DF于F,EC⊥CD于C
∴EF=EC(角平分线定理)