S△AOB=25,
S△BOC=35,
△AOB与△BOC共用一个高,
S△AOB/S△BOC=AO/OC=25/35=5/7,
AD‖BC,
△AOD∽△COB,(对顶角、内错角相等)
S△AOD/S△BOC=(AO/OC)^2=25/49,
S△AOD=35*25/49=125/7,
S△AOD/S△OCD=AO/CO=5/7,
S△OCD=(125/7)*7/5=25,(S△ABD和S△ACD同底同高故等积,去除S△AOD后,
S△COD=S△AOB),
梯形ABCD的面积=25+35+125/7+25=720/7.