分别设A、B向量与x轴夹角α、β,且他们模长都为1.
则 A=(cosα,sinα),B=(cosβ,sinβ)
那么AB的内积A.B=|A|.|B|cos(α-β)=cos(α-β)
另一方面内积可表示为: A.B=cosαcosβ+sinαsinβ
两者相等,所以 cos(α-β)=cosαcosβ+sinαsinβ
分别设A、B向量与x轴夹角α、β,且他们模长都为1.
则 A=(cosα,sinα),B=(cosβ,sinβ)
那么AB的内积A.B=|A|.|B|cos(α-β)=cos(α-β)
另一方面内积可表示为: A.B=cosαcosβ+sinαsinβ
两者相等,所以 cos(α-β)=cosαcosβ+sinαsinβ