证:
连结AD、BD、AE、CE.
因为D、E分别是两弧中点,
所以弧AD=弧BD,弧AE=弧CE.
等弧所对的圆周角相等,所以角ABD=角DAB,角ACE=角CAE.
又因为同弧所对的圆周角相等,所以角ABD=角AED,角ACE=角ADE.
由以上两组式子得到角DAB=角AED,角CAE=角ADE.
所以三角形ADF相似于三角形EAG.
因此有AF/EG=DF/AG,
即得AF*AG=DF*EG.
证:
连结AD、BD、AE、CE.
因为D、E分别是两弧中点,
所以弧AD=弧BD,弧AE=弧CE.
等弧所对的圆周角相等,所以角ABD=角DAB,角ACE=角CAE.
又因为同弧所对的圆周角相等,所以角ABD=角AED,角ACE=角ADE.
由以上两组式子得到角DAB=角AED,角CAE=角ADE.
所以三角形ADF相似于三角形EAG.
因此有AF/EG=DF/AG,
即得AF*AG=DF*EG.