有这么一个公式:
a^n-b^n=(a-b)*[a^(n-1)+a^(n-2)*b+a^(n-3)*b^2+a^(n-4)*b^3+...+a^(n-i)*b^(i-1)+...+a*b^(n-2)+b^(n-1)]
推理过程:
x^n-a^n)
=(x-a)(x^(n-1)+ax^(n-2)+...a^(n-1))
例如:x^2-a^2=(x-a)(x+a)
x^3-a^3=(x-a)(x^2+ax+a^2)
x^4-x^4=(x-a)(x^3+3x^2a+3xa^2+a^3)
.
根据排列组合中的扬辉三角和二项式定理确定项数,系数和次方.