已知a>0,b>0,c>0,求证:(1)(a+b)(b+c)(c+a)>=8abc;(2)(a/b)+(b/c)(c/a

2个回答

  • (1)

    a+b=[a+b-2√(ab)]+2√(ab)=(√a-√b)²+2√(ab)

    ∵(√a-√b)²≥0

    ∴a+b≥2√(ab)

    同理a+c≥2√(ac),b+c≥2√(bc)

    ∴(a+b)(b+c)(c+a)>=2√(ab)×2√(ac)×2√(bc)=8abc

    (2)(a/b)+(b/c)+(c/a)>=3

    令a/b=p^3,b/c=q^3,c/a=r^3

    (a/b)+(b/c)+(c/a)=p^3+q^3+r^3

    现证明p^3+q^3+r^3≥3pqr

    p^3+q^3+r^3-3pqr

    =[( p+q)^3-3p^2q-3pq^2]+r^3-3pqr

    =[(p+q)^3+r^3]-(3p^2q+3pq^2+3pqr)

    =(p+q+r)[(p+q)^2-(p+q)r+r^2]-3pq(p+q+r)

    =(p+q+r)(p^2+q^2+2pq-pr-qr+r^2)-3ab(p+q+r)

    =(p+q+r)(p^2+q^2+r^2-pq-pr-qr)

    =(p+q+r)(2p^2+2q^2+2r^2-2pq-2qr-2pr)/2

    =(p+q+r)[(p-q)^2+(q-r)^2+(p-r)^2]/2

    p+q+r都为正实数,

    所以p^3+q^3+r^3-3pqr=(p+q+r)[(p-q)^2+(q-r)^2+(p-r)^2]/2≥0

    当且仅当p=q=r时,p^3+q^3+r^3-3pqr=0

    即p^3+q^3+r^3≥3pqr成立

    把a/b=p^3,b/c=q^3,c/a=r^3代入有

    (a/b)+(b/c)+(c/a)≥3×a/b×b/c×c/a=3

    即(a/b)+(b/c)+(c/a)≥3得证