(1)∵OA=OB=OD=1,
∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0);
(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,
∴ -k+b=0;b=1,解得 ,k=1;b=1
∴一次函数的解析式为y=x+1.
∵点C在一次函数y=x+1的图象上,且CD⊥x轴,
∴点C的坐标为(1,2),
又∵点C在反比例函数y= m/x(m≠0)的图象上,
∴m=2;
∴反比例函数的解析式为y=2/x .
(1)∵OA=OB=OD=1,
∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0);
(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,
∴ -k+b=0;b=1,解得 ,k=1;b=1
∴一次函数的解析式为y=x+1.
∵点C在一次函数y=x+1的图象上,且CD⊥x轴,
∴点C的坐标为(1,2),
又∵点C在反比例函数y= m/x(m≠0)的图象上,
∴m=2;
∴反比例函数的解析式为y=2/x .