已知tan^2θ=2tan^2a+1,求证:cos2θ+sin^2a=0
1个回答
tan^2θ+1=2(tan^2a+1)
sec^2θ=2sec^2a
cos^2a=2cos^2θ
所以cos2θ=-2sin^2a
cos2θ+2sin^2a=0
相关问题
求证:(1-tanθ)/(1+tanθ)=(1-2sinθcosθ)/(cos2θ-sin2θ)
求证:2(cos θ -sin θ )/(1+sinθ +cosθ)=tan(∏/4- θ /2)-tan(θ /2)
已知tanθ+sinθ=a,tanθ-sinθ=b,求证:(a2-b2)2=16ab.
已知tanθ+sinθ=a,tanθ-sinθ=b,求证:(a2-b2)2=16ab.
已知sin2θ=5cos^2θtana,求证tan(θ+a)=7sin2a/7cos2a-3)
求证:sin^2θtanθ+cos^2θcotθ+2sinθcosθ=tanθ+cotθ
求证:(1)tanθ/2-1/tanθ/2=-2/tanθ (2)1+sin2φ/cosφ+sinφ=cosφ+sinφ
求证 (sinθ+cosθ-1)(sinθ-cosθ+1)) /sin2θ=tanθ/2
求证:sin2θ+sinθ/2cos2θ+2sin^2θ+cosθ=tanθ
求证:[1+sin4θ−cos4θ/2tanθ]=[1+sin4θ+cos4θ1−tan2θ