y=u/v
则y'=(u'v-uv')/v^2
这里u=2x-1,v=(x^2+1)^(1/2)
所以u'=2
v'=1/2*(x^2+1)^(1/2-1)*(x^2+1)'
=1/2*(x^2+1)^(-1/2)*2x
=x/√(x^2+1)
所以y'=[2√(x^2+1)-(2x-1)*x/√(x^2+1)]/(x^2+1)
=(2x^2+2-2x^2+x)/[(x^2+1)√(x^2+1)]
=(x+2)/[(x^2+1)√(x^2+1)]
y=u/v
则y'=(u'v-uv')/v^2
这里u=2x-1,v=(x^2+1)^(1/2)
所以u'=2
v'=1/2*(x^2+1)^(1/2-1)*(x^2+1)'
=1/2*(x^2+1)^(-1/2)*2x
=x/√(x^2+1)
所以y'=[2√(x^2+1)-(2x-1)*x/√(x^2+1)]/(x^2+1)
=(2x^2+2-2x^2+x)/[(x^2+1)√(x^2+1)]
=(x+2)/[(x^2+1)√(x^2+1)]