解题思路:(1)先根据已知条件Sn+1=4an+2得到Sn+2=4an+1+2,作差整理即可得到数列{bn}是等比数列;
(2)直接根据数列{bn}是等比数列,求出an+1-2an的表达式;再代入数列{cn}的作差式,整理即可得到结论.
(3)先根据数列{cn}是等差数列得到的通项得到an=(3n-1)2n-2;再结合Sn+1=4an+2 即可求出结论数列{an}的前n项和.
(1)由Sn+1=4an+2 (n∈N*)知,Sn+2=4an+1+2,两式相减得an+2=4an+1-4an
an+2-2an+1=2(an+1-2an),又bn=an+1-2an所以bn+1=2bn…①
已知S2=4a1+2,a1=1解得a2=5,b1=a2-2a1=3…②
由①②得数列{bn}是首项为3,公比为2的等比数列,∴bn=3•2n-1.…(4分)
(2)∵bn=an+1-2an=3•2n-1.…
∵cn=
an
2n(n∈N*),
∴cn+1-cn=
an+1
2n+1−
an
2n=
an+1−2an
2n+1=
3•2n−1
2n+1=[3/4].
又c1=
a1
2=[1/2],
故数列{cn}是首项为[1/2],公差是[3/4]的等差数列,
∴cn=[3/4]n-[1/4]…(8分)
(3)∵cn=
an
2n(n∈N*)
又cn=[3/4]n-[1/4]
∴an=(3n-1)2n-2…(10分)
当n≥2时,Sn=4an-1+2=(3n-4)2n-1+2;
当n=1时S1=a1=1也适合上式,
所以{an}的前n项为Sn=(3n-4)2n-1+2…(12分)
点评:
本题考点: 数列的求和;等差关系的确定;等比关系的确定.
考点点评: 本题主要考察数列的求和以及等差数列和等比数列的确定.解决本题的关键在于由Sn+1=4an+2 得到Sn+2=4an+1+2,进而作差整理得到数列{bn}是等比数列.