因为 x^2 - 4xy + 5y^2 - 4y + 4 = 0
所以 (x^2 - 4xy + 4y^2) + (y^2 - 4y + 4) = 0
即: ( x - 2y)^2 + (y - 2)^2 = 0
因为: (x - 2y)^2 ≥ 0 ( y - 2)^2 ≥ 0
所以有: y = 2 , x = 2y = 2×2 = 4
所以, (x^2 + y^2)/(x+1)(y - 1) = (4^2 + 2^2)/[(4 + 1)(2 - 1)] = 20
因为 x^2 - 4xy + 5y^2 - 4y + 4 = 0
所以 (x^2 - 4xy + 4y^2) + (y^2 - 4y + 4) = 0
即: ( x - 2y)^2 + (y - 2)^2 = 0
因为: (x - 2y)^2 ≥ 0 ( y - 2)^2 ≥ 0
所以有: y = 2 , x = 2y = 2×2 = 4
所以, (x^2 + y^2)/(x+1)(y - 1) = (4^2 + 2^2)/[(4 + 1)(2 - 1)] = 20