设该等差数列的公差为d,则:
∵a5+a7=a3+a9=26
∴a9=26-7=19=a3+6d=7+6d
∴d=2
a3=a1+2d=7
a1=3
∴an=a1+(n-1)d
=3+2(n-1)
=2n+1
Sn=(a1+an)/2 = (3+2n+1)n/2 = n(n+2)
bn=1/Sn=1/[n(n+2)]=(1/2)[1/n - 1/(n+2)]
b1=(1/2)(1-1/3)
b2=(1/2)(1/2-1/4)
b3=(1/2)(1/3-1/5)
b4=(1/2)(1/4-1/6)
.
bn=(1/2)[1/n - 1/(n+2)]
上述各式相加:
Tn=(1/2)[1+1/2 -1/(n+1) - 1/(n+2)]=3/4-(n+3/2)/[(n+1)(n+2)]