[根号下(x^2-9)]/x的不定积分(换元法)

1个回答

  • 令√(x^2-9)=u,则:x^2=u^2+9,∴d(x^2)=2udu.

    ∴∫[√(x^2-9)/x]dx

    =(1/2)∫[2x√(x^2-9)/x^2]dx

    =(1/2)∫[√(x^2-9)/x^2]d(x^2)

    =(1/2)∫[u/(u^2+9)]·2udu

    =∫{[(u^2+9)-9]/(u^2+9)}du

    =∫du-9∫[1/(u^2+9)]du

    =u-9∫{1/[9(u/3)^2+9]}du

    =u-3∫{1/[(u/3)^2+1]}d(u/3)

    =u-3arctan(u/3)+C

    =√(x^2-9)-3arctan[(1/3)√(x^2-9)]+C.