先证充分:设公差为d,s(n+1)={(n+1)[a1+a(n+1)]}/2为一式,sn=[n(a1+an)]/2为二式,两式相减 推出 a(n+1)-a1=n[a(n+1)-an]即nd=nd 证必要:an=a1+(n-1)d①
sn=ai+a2+a3+.an=a1+a1+d+a1+2d+.a1+(n-1)d=na1+{1+2+3+4+.(n-1)}d=na1+{[n(n-1)]/2}d而由①知sn=[n(a1+an)]/2=na1+{[n(n-1)]/2}d
先证充分:设公差为d,s(n+1)={(n+1)[a1+a(n+1)]}/2为一式,sn=[n(a1+an)]/2为二式,两式相减 推出 a(n+1)-a1=n[a(n+1)-an]即nd=nd 证必要:an=a1+(n-1)d①
sn=ai+a2+a3+.an=a1+a1+d+a1+2d+.a1+(n-1)d=na1+{1+2+3+4+.(n-1)}d=na1+{[n(n-1)]/2}d而由①知sn=[n(a1+an)]/2=na1+{[n(n-1)]/2}d