已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若g(1)=2,则f(2012)=(

1个回答

  • 解题思路:根据函数奇偶性之间的关系求出函数f(x)是周期函数,即可得到结论.

    ∵g(x)是R上的奇函数,且g(x)=f(x-1),

    ∴g(-x)=f(-x-1)=-f(x-1),

    ∵函数f(x)是R上的偶函数,

    ∴f(-x-1)=-f(x-1)=f(x+1),

    则f(x+2)=-f(x),

    即f(x+4)=-f(x+2)=f(x),

    则f(x)是周期为4的周期函数,

    则f(2012)=f(0)=f(1-1)=g(1)=2,

    故选:A

    点评:

    本题考点: 函数奇偶性的性质.

    考点点评: 本题主要考查函数值的计算,根据函数奇偶性的定义和性质进行转化,求出函数f(x)是周期函数是解决本题的关键.