有四个数,每次选其中两个数,算出它们的和,再减去另外两个的平均数.用这样的方法计算了六次,得到这样六个数:86,106,

1个回答

  • 设这四个数为a,b,c,d

    算六次得数就是a+b-(c+d)/2, a+c-(b+d)/2 a+d-(b+c)/2 b+c-(a+d)/2

    b+d-(a+c)/2 c+d-(a+b)/2

    把它们相加得3a+3b+3c+3d-(3a+3b+3c+3d)/2=86+106+114+126+138+156=726

    所以(3a+3b+3c+3d)/2=726

    所以(a+b+c+d)/2=242

    所以原来这四个数的平均数是242

相关问题