如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A的直线交悦考网y轴正半轴与

1个回答

  • 如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A的直线交y轴正半轴与点M,且点M为线段OB的中点.(1)求直线AM的函数解析式.(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)通过函数y=2x+12求出A、M两点坐标,由两点坐标求出直线AM的函数解析式;(2)设出P点坐标,按照等量关系“ <?xml:namespace prefix = m />12×|AP|×B到直线AM的距离=S△AOB”即可求出;(3)判断能否构成等腰梯形,主要看两腰能否等腰,本题应分别把AB、AM、BM看作底来判断.(1)∵直线AB的函数解析式y=2x+12,∴A(-6,0),B(0,12).又∵M为线段OB的中点,∴M(0,6).∴直线AM的解析式y=x+6;(2)设P点坐标(x,x+6),则|AP|= 2|x+6|,B到直线AM的距离d= |0-12+6|12+12=32,∴ 12×2|x+6|×32=12×6×12,解得:x=6或-18.∴P(6,12)或P(-18,-12);(3)存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形.若以AM为底,BM为腰,过点B作AM的平行线,当点H的坐标为(-12,0)时,以A,B,M,H为顶点的四边形是等腰梯形;若以BM为底,AM为腰,过点A作BM的平行线,当点H的坐标为(-618)时,以A,B,M,H为顶点的四边形是等腰梯形;故所求点H的坐标为(-12,0)或(-6,18)参考资料:hi.baidu.com/...c.html