过A作BC的平行线分别交BE、CF的延长线于G、H
AP=PD ==>AG=BD,BP=PG=9 ==>EG=9-3=6
==>AG:BC=EG:BE=6:12=1/2 ==>D为BC中点
同理:AH=CD=BC/2 ==>FH=CF/2=10 ==>CP=(10+20)/2=15
又AG‖=CD ==>CG=AD=12
△CPG中,PG²+CG²=9²+12²=15²=CP² ==>∠CGP是直角
==>S△ABC=S△GBC=CG•BG/2=12•18/2=108
过A作BC的平行线分别交BE、CF的延长线于G、H
AP=PD ==>AG=BD,BP=PG=9 ==>EG=9-3=6
==>AG:BC=EG:BE=6:12=1/2 ==>D为BC中点
同理:AH=CD=BC/2 ==>FH=CF/2=10 ==>CP=(10+20)/2=15
又AG‖=CD ==>CG=AD=12
△CPG中,PG²+CG²=9²+12²=15²=CP² ==>∠CGP是直角
==>S△ABC=S△GBC=CG•BG/2=12•18/2=108