用等腰三角形顶角与底角的数量关系,加上三角形内角和可得.
∵AB=AD,∴∠ADB=1/2(180°-∠A)
∵CB=CE,∴∠CEB=1/2(180°-∠C),
∴∠EBD=180°-(∠ADB+∠CEB)
=180°-[180°-1/2(∠A+∠C)]
=1/2(∠A+∠C)
=90°-1/2∠B.
①当∠ABC=45°时,∠EBD=45°,
②当∠ABC=100°时,∠EBD=40°,
③当∠ABC=α时,∠EBDE=90°-1/2α.
用等腰三角形顶角与底角的数量关系,加上三角形内角和可得.
∵AB=AD,∴∠ADB=1/2(180°-∠A)
∵CB=CE,∴∠CEB=1/2(180°-∠C),
∴∠EBD=180°-(∠ADB+∠CEB)
=180°-[180°-1/2(∠A+∠C)]
=1/2(∠A+∠C)
=90°-1/2∠B.
①当∠ABC=45°时,∠EBD=45°,
②当∠ABC=100°时,∠EBD=40°,
③当∠ABC=α时,∠EBDE=90°-1/2α.